CEFORE

Modelo de movimiento del terreno para sismos en la zona de subducción del Perú

A lo largo de la historia, el proceso de subducción ha originado sismos de gran magnitud como los terremotos de Pisco de 2007 (M8.0) o Atico de 2001 (M8.4), que resultaron en significativas pérdidas humanas y económicas para el país.

ESTADO DEL ARTE Y DESCRIPCIÓN DEL PROYECTO

El Perú es uno de los países con mayor actividad sísmica en el mundo debido a su ubicación a lo largo del cinturón de fuego del Pacífico. Esta actividad sísmica está relacionada principalmente a la subducción de la placa de Nazca bajo la placa Sudamericana a una tasa de promedio de entre 6-9 cm/año (DeMets et al., 1990; Villegas-Lanza et al., 2016). A lo largo de la historia, el proceso de subducción ha originado sismos de gran magnitud como los terremotos de Pisco de 2007 (M8.0) o Atico de 2001 (M8.4), que resultaron en significativas pérdidas humanas y económicas para el país. Con el propósito de mitigar las pérdidas materiales y de vidas humanas, surge la necesidad de cuantificar los efectos de los sismos. En la actualidad, una de las principales herramientas para la mitigación de desastres por causa de terremotos es la evaluación de peligro sísmico, la cual permite estimar la demanda sísmica a la que estaría sometida infraestructuras civiles de gran importancia como, por ejemplo, presas de agua, centrales hidroeléctricas, estructuras mineras, puentes, entre otras) en un determinado periodo de retorno.

Dentro del marco de la evaluación del peligro sísmico, uno de los factores que más variabilidad e incertidumbre introduce a los resultados, es la selección del modelo de movimiento del terreno (en adelante GMM, del inglés Ground Motion Model), a utilizar en el análisis. En el Perú se han desarrollado únicamente dos modelos con registros sísmicos locales: Casaverde y Vargas (1980) y Chávez et al. (2009). El modelo propuesto por Casaverde y Vargas (1980) está asociado a sismos de subducción ubicados alrededor de Lima y fue obtenido con base en solo 10 registros sísmicos y únicamente presenta resultados para la máxima aceleración en el terreno (PGA). Por otro lado, el modelo de Chávez et al. (2009) considera para su regresión cerca de 300 registros sísmicos; no obstante, la cantidad de registros usados es pequeña en comparación con GMMs modernos. Los resultados se presentan para varios periodos estructurales y para una clasificación de sitio C (ASCE/SEI, 2017). De acuerdo con los criterios de selección para GMMs propuestos por Bommer et al. (2010) ninguno de estos modelos podría ser utilizado en una evaluación moderna de peligro sísmico.

Dado el desempeño limitado de GMMs derivados de datos locales, es común en la práctica actual en la evaluación del peligro sísmico adoptar modelos procedentes de otras regiones como Chile (p. ej. Contreras y Boroscheck, 2012; Montalva et al., 2017), Japón (p. ej. Zhao et al., 2016a, 2016b), Nueva Zelanda (p. ej. McVerry et al., 2006), o de datos globales (p. ej. Youngs et al., 1997; Abrahamson et al., 2016). Una muestra de esta práctica de adoptar GMMs derivados de otras regiones se encuentra en la norma peruana de Diseño Sismorresistente (E.030-2019), donde el factor de zona (Z) que cuantifica la demanda sísmica en el Perú está determinado en función a modelos de movimiento del terreno derivados de otras regiones. La adopción de modelos derivados de otras regiones a la zona de subducción del Perú también requiere un respaldo técnico que evalúe cuantitativamente que modelos se ajustan mejor a los registros sísmicos de Perú. Dicha evaluación fue realizada por Charca et al. (2019), quienes concluyen que el GMM de Abrahamson et al. (2016) es el que mejor representa los registros sísmicos de aceleraciones registrados en el Perú y sugieren que la forma funcional de este modelo podría ser el punto de partida para la generación de un nuevo GMM para sismos de subducción en el Perú.

Por otro lado, en los últimos 5 años, entidades estatales como el Instituto Geofísico del Perú y el Colegio de Ingenieros del Perú en conjunto con la Unidad de Posgrado de la Facultad de Ingeniería Civil de la Universidad Nacional de Ingeniería, han tomado medidas para optimizar la manera en que se monitorean los sismos en el país, mediante la instalación de un gran número de acelerógrafos a lo largo del territorio nacional, constituyendo así redes acelerográficas adecuadamente instrumentadas que han permitido registrar de forma apropiada eventos sísmicos de mediana y gran magnitud. Los eventos sísmicos registrados por estas redes acelerográficas en esta ventana de tiempo incluyen el sismo de Acarí de 2018 (M7.1) o Lagunas de 2019 (M8.0).

Por lo expuesto líneas arriba sobre la importancia que representa la evaluación del peligro sísmico en el país debido a su elevada actividad sísmica, la ausencia de un GMM desarrollado con registros locales acorde a los estándares actuales, la necesidad de calcular los factores de zona (Z) de la norma técnica de Diseño Sismorresistente (E030-2019) con un GMM específico para la zona de subducción del Perú y la importante información registrada por redes acelerográficas de reciente instalación; el presente proyecto de investigación propone el desarrollo de un nuevo modelo de movimiento del terreno específico para la zona de subducción del Perú. Este modelo se realizará de acuerdo con los estándares actuales de la ingeniería sísmica y en concordancia con los registros sísmicos tiempo-historia registrados por las redes acelerográficas de Perú y norte de Chile. Los resultados del desarrollo de un nuevo GMM conllevarán a una mejor evaluación del peligro sísmico en el Perú, una reducción en la incertidumbre en la determinación de la demanda sísmica que implica el uso de GMMs de otras regiones.

En forma general el proyecto seguirá los siguientes pasos: primero, se recopilarán todos los registros sísmicos disponibles en las redes acelerográficas peruanas y chilenas (esto último debido a la influencia que tienen los eventos del norte de Chile sobre el Perú); luego, se realizará la caracterización geofísica de aquellas estaciones acelerográficas que tengan una influencia significativa en la base de datos en términos de número de registros aportados al flatfile y el nivel de intensidad de aceleraciones que presente, con el fin de separar los efectos de sitio en la forma funcional. Posteriormente se llevará a cabo un análisis de regresión con los datos recopilados empleando una de las metodologías más utilizadas para el desarrollo de GMMs y que han resultado satisfactorias en cada una de sus aplicaciones, como por ejemplo el método de dos pasos (Joyner y Boore, 1981), modelos de efectos aleatorios (Brillinger y Preisler, 1984) o modelos de efectos mixtos no lineales (Montalva et al., 2017; Stafford, 2014). Finalmente, se validará la regresión mediante un análisis de sensibilidad utilizando una metodología tipo bootstrap (Efron y Tibshirani, 1984), y se evaluará el modelo con metodologías cuantitativas como el puntaje logarítmico multivariante propuesto por Mak et al. (2017) que es una extensión del puntaje logarítmico univariante (conocido como LLH) y la distancia euclidiana entre los datos observados y predichos (Kale y Akkar, 2013).

REFERENCIAS

Abrahamson, N., Gregor, N., & Addo, K. (2016). BC Hydro Ground Motion Prediction Equations for Subduction Earthquakes. Earthquake Spectra, 32(1), 23-44. doi: 10.1193/051712eqs188mr

American Society of Civil Engineers. (2017). ASCE standard ASCE/CEI 7-16: Minimum Design Loads and Associated Criteria for Buildings and Other Structures

Bommer, J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., & Fah, D. (2010). On the Selection of Ground-Motion Prediction Equations for Seismic Hazard Analysis. Seismological Research Letters, 81(5), 783-793. doi: 10.1785/gssrl.81.5.783

Brillinger, D. & Preisler, H. (1984). An exploratory analysis of the Joyner-Boore attenuation data. Bulletin of the Seismological Society of America (1984) 74 (4): 1441–1450.

Casaverde L. y Vargas J. (1980): Zonificación Sísmica del Perú, II Seminario Latinoamericano
de Ingeniería Sismorresistente, OEA y PUCP Lima, Perú.

Charca, O.; Gamarra, C. y Parra, D. (2019). Selection of Subduction Ground Motion Prediction Equations for Seismic Hazard Assessment in Peru. XVI Panamerican Conference on Soil Mechanics and Geotechnical Engineering. Cancun, Mexico.

Chávez, J., Alva, J., Aguilar, Z., & Lázares, F. (2009). Actualización de las relaciones de atenuación CISMID para aceleraciones espectrales de sismos de subducción en el Perú. In XVII Congreso Nacional de Ingeniería Civil. Chiclayo: Instituto de la Construcción y Gerencia.

DeMets, C., Gordon, R., Argus, D., & Stein, S. (1990). Current plate motions. Geophysical Journal International, 101(2), 425-478. doi: 10.1111/j.1365-246x.1990.tb06579.x

Efron, B., & Tibshirani, R. (1994). An introduction to the bootstrap. New York: Chapman & Hall.

Joyner, W. & Boore, D. (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 imperial valley, California, earthquake. Bulletin of the Seismological Society of America (1981) 71 (6): 2011–2038.

Kale, O., & Akkar, S. (2013). A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method. Bulletin of The Seismological Society Of America, 103(2A), 1069-1084. doi: 10.1785/0120120134

Mak, S., Clements, R. A., & Schorlemmer, D. (2017). Empirical Evaluation of Hierarchical Ground‐Motion Models: Score Uncertainty and Model Weighting. Bulletin of the Seismological Society of America, 107(2), 949 – 965. https://doi.org/10.1785/0120160232

McVerry, G. H., Zhao, J. X., Abrahamson, N. A., & Somerville, P. G. (2006). New Zealand acceleration response spectrum attenuation relations for crustal and subduction zone earthquakes. Bulletin of the New Zealand Society for Earthquake Engineering, 39(1), 1-58.

Montalva, G., Bastías, N., & Rodriguez‐Marek, A. (2017). Ground‐Motion Prediction Equation for the Chilean Subduction Zone. Bulletin of The Seismological Society of America, 107(2), 901-911. doi: 10.1785/0120160221

Stafford, P. J. (2014). Crossed and Nested Mixed‐Effects Approaches for Enhanced Model Development and Removal of the Ergodic Assumption in Empirical Ground‐Motion Models. Bulletin of the Seismological Society of America, 104(2), 702–719. https://doi.org/10.1785/0120130145

Villegas-Lanza, J., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J. (2016). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. Journal of Geophysical Research: Solid Earth, 121(10), 7371-7394. doi: 10.1002/2016jb013080

Youngs, R., Chiou, S., Silva, W., & Humphrey, J. (1997). Strong Ground Motion Attenuation Relationships for Subduction Zone Earthquakes. Seismological Research Letters, 68(1), 58-73. doi: 10.1785/gssrl.68.1.58

Zhao, J., Liang, X., Jiang, F., Xing, H., Zhu, M., & Hou, R. et al. (2016a). Ground‐Motion Prediction Equations for Subduction Interface Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bulletin Of The Seismological Society Of America, 106(4), 1518-1534. doi: 10.1785/0120150034

Zhao, J., Jiang, F., Shi, P., Xing, H., Huang, H., & Hou, R. et al. (2016b). Ground‐Motion Prediction Equations for Subduction Slab Earthquakes in Japan Using Site Class and Simple Geometric Attenuation Functions. Bulletin of The Seismological Society Of America, 106(4), 1535-1551. doi: 10.1785/0120150056

El presente documento ha sido facilitado a Cefore por la PhD. Selene Quispe de Anddes Perú. El presente documento ha sido trabajado por el equipo de Anddes Perú.

Compartir:

Share on facebook
Facebook
Share on twitter
Twitter
Share on pinterest
Pinterest
Share on linkedin
LinkedIn
Autor:

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.

De interés

Publicaciones relacionadas

Bienvenido

Ingresa tus datos registrados

Send this to a friend